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Introduction
The large potential applications of a pedestrian navigation system 

have attracted the attention of many researchers worldwide. Improving 
the performance of such systems as an important issue is still an open 
research challenge. 

Navigation systems can be considered as indoor and outdoor. 
Outdoor navigation systems are mostly developed using Global 
Positioning System (GPS), however GPS is degraded in urban areas, 
tunnels, thick forest and indoor environments. Indoor navigation 
systems can be categorized as beacon-based (infrastructure-based) and 
beacon-free (infrastructure-free) approaches [1]. Beacon-based system 
relies on the infrastructure such as Wireless Fidelity (WIFI), Ultra-
Wideband (UWB), Radio Frequency Identification (RFID) and infrared 
ultrasound [2-4]. Although these systems estimate the user’s position 
with tracking error rate of less than 1% of the total traveled distance, 
their main drawbacks are the expenses and difficulty of infrastructure 
deployment. Beacon-free system relies on Inertial Measurement Unit 
(IMU). Utilizing the latest advancements in Micro Electro Mechanical 
Systems (MEMS) technology, several types of off-the-shelf IMUs 
are produced. IMU incorporates an assortment of inertial sensors, 
including orthogonal gyroscopes, accelerometers, and sometimes 
magnetometers and barometric pressure sensor [5,6]. However, 
magnetometer is sensitive to the properties of environments, e.g., 
presence of metals might influence the magnetometer performance, 
thus in general it is not reliable enough to be used in an indoor 
navigation system.

The signal generated by gyroscope and accelerometer can be 
employed to estimate the pedestrian orientation and position. 
Pedestrian Dead Reckoning (PDR) and Inertial Navigation System 
(INS) are two conventional methods that provide such estimation, 
taking advantage of the sequential nature of human bipedal locomotion.

In PDR methodology, position of the pedestrian is obtained based 
on the step length and heading angle at each detected step. The step 
length is time-varying, and can be estimated online using its linear 
relationship with step frequency [7], while the heading is obtained 
from the data measured by gyroscope or magnetometer. The accuracy 
of navigation system based on PDR alone can be as low as 2%-10%, 

where acceleration can be measured on the torso, waist, foot and 
head [8-11]; however the error may grow quickly due to the inherent 
instrumental error, disturbances from the environment and unsteady 
walking, in addition to error of step length calculation and increment 
of the heading error as a non-observable state [12,13].

On the other hand, inertial navigation technology can be employed 
for pedestrian tracking [1,8,14]. In an INS by integrating the angular 
velocity signals measured by gyroscope, the IMU orientation is 
obtained. In addition these signals are used to transform the measured 
accelerations from the local coordinates system to the global coordinates 
system. Knowing the starting point, the pedestrian position in turn is 
estimated by double integrating the acceleration after subtracting the 
gravitational acceleration. However, the data from IMU is susceptible 
to drift error. Integration and double integration of biases exist on the 
signals measured by accelerometers and gyroscopes, together with the 
incorrect projection of gravitational acceleration on the horizontal axes, 
will result in the large tracking error. This error grows cubically in time 
and may exceed one meter in a few seconds [12-15].

A human gait consists of stance and swing phases [16,17]. In order 
to limit the INS error growth, many researchers mounted IMU on the 
user’s shoe (as shown in Figure 1) and used different techniques to detect 
the stance phase, based on IMU signals [12,18-21]. Among them Foxlin 
[22] was one of the initiative researchers who used Extended Kalman 
Filter (EKF) to estimate the error and correct the states in every stance 
phase using Zero velocity UPdaTe (ZUPT). Zero Angular Rate Update 
(ZARU) is another common technique that estimates the bias of the 
gyroscope in every so called still phase [19,23]. Based on the fact that 
most of the paths in indoor environments are straight, Borenstein et al. 
[24] proposed a technique called Heuristic Drift Reduction (HDR) to 
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Abstract
This paper presents a method for an indoor pedestrian localization, based on the data that solely are measured 

by a foot-mounted Inertial Measurement Unit (IMU). To locate the user accurately, a comprehensive Extended Kalman 
Filter (EKF) with five states is developed. Five different error reduction methods are employed to estimate the errors of 
all five states. These error reduction methods feed EKF independently, at stance phases or different time intervals of 
swing phases. The navigation system is developed using the accelerometer and gyroscope measurements and without 
magnetometer, thus it is insensitive to the presence of metal and magnetic fields, and it is able to estimate the user’s 
tracked trajectory with the same accuracy in both indoor and outdoor environments. The system does not rely on the 
measurement from external infrastructure (e.g., RFID). To evaluate the accuracy of the system, several experimental 
tests are carried out over the known trajectories. Results demonstrate that the error of the estimated tracked trajectory 
is less than 1% of the total traveled distance.
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bipedal walking yields to obtain the sequential similar signals.

Inertial Tracking Methods
This section details our proposed pedestrian tracking algorithm. In 

comparison to the state-of-the-art on EKF-based navigation systems, in 
this work: (i) we update EKF with the error measurements from all five 
states and not only one (υ in [22]) or three states (υ, ψ and ω in [19]); 
(ii) the correction is applied not only at stance phases (alike previous 
works) but also at different time intervals of swing phases; (iii) different 
from the previous works, the error reduction methods update EKF 
independently, which improves the tracking accuracy, significantly; 
and (iv) the system is developed without using magnetometer, thus it 
can work properly in the existence of metal.

Figure 4 illustrates the framework of the proposed navigation 
system. As can be seen, IMU measures the user’s foot acceleration a 
and angular velocity ω. These data are used to detect stance phases, and 

reduce the heading error. Jimenez et al. [1,19] presented the IMU-alone 
EKF-based INS algorithm for indoor navigation with tracking error 
rate of 0.8%-1.8% of the total traveled distance. However the accuracy 
of these systems needs to be improved.

This paper presents an infrastructure-free navigation system 
which accurately locates the pedestrian indoor. The accelerometers 
and gyroscopes measurements are used to calculate the user’s position 
and orientation, and the 15-element EKF is implemented to correct the 
estimations. Five different error reduction methods are used to measure 
the errors of five states, which feed EKF independently. This system is 
developed as a part of the blind navigation aid project [25]. Taking 
into account the fact that blind in indoor environments usually follows 
straight paths and walks parallel to the building’s walls, the proper error 
reduction methods are implemented. In addition, while magnetometer 
is not used, the system is insensitive to the environment equipment 
and supplies. Compare to the state-of-the-art, in this work more error 
reduction methods are employed that feed EKF independently and at 
both stance and different time intervals of swing phases. It causes to 
obtain the higher accuracy from an EKF-based INS algorithm. The 
performance of the navigation system is evaluated in several tests and 
results show the tracking error is less than 1% in terms of the percentage 
of the total traveled distance.

The remainder of the paper is organized as follows. Section II 
presents the IMU sensor used in this work. Section III describes the 
EKF-based INS method. Section IV details the error reduction methods. 
Section V discuses an evaluation of several indoor tracking tests, and 
finally, conclusion and future research directions are summarized in the 
last section.

Sensor Module Selection
Considering many factors including size, dynamic range, 

sampling rate and bias, we select the commercially available IMU, 
NavChipISNC01 from InterSense Inc. [5]. This miniature IMU is 
a high precision MEMS six-axis inertial measurement unit. Its size 
with castellations and frame is 92×58×22 mm (length×width×height), 
and it weighs 51 g. IMU is configured to provide inertial data at 200 
Hz. The IMU outputs are a(t), dθ(t) and m(t) that corresponds to the 
output of the three-axis accelerometer, gyroscope and magnetometer, 
respectively.

In this work we mount the IMU on the user’s foot, to take advantage 
of the sequential nature of the pedestrian motion and to employ error 
reduction methods at foot stances. Figure 2 shows how sensor can be 
fixed on the right foot of the user, using shoe laces. Assuming the user is 
walking along global y-axis, the sensor local (body) coordinates and the 
global coordinates are shown. Our algorithm is developed irrespective 
of the exact position and orientation of IMU on the user’s shoe.

At every sample time, IMU measures accelerations and angular 
velocities. Figure 3 shows the typical signals measured by IMU during 
five steps of walking. As can be seen, the sequential nature of human 

Midstance                      Heel-off                              Toe-off                         Heel strike                       Midstance

Figure 1:  Foot-mounted inertial measurement unit.

Figure 2: IMU mounted on the user’s right foot using shoe laces, the local 
coordinates and orientation of the global coordinates assuming the user is 
walking along y-axis.
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Figure 3: The typical signals measured by IMU over five steps of human 
walking, in the local coordinates. (a) Acceleration (b) Angular velocity.
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to calculate position r, velocity v and heading Ψ. Five error reduction 
methods include Heuristic Drift Reduction (HDR), Zero Angular Rate 
Update (ZARU), Investigative Position Error Reduction (IPER), Zero 
velocity UPdaTe (ZUPT) and Zero UNrefined Acceleration update 
(ZUNA) are used to compensate gravity, sensor’s bias and errors of EKF 
states. Error reduction methods feed EKF independently, with error 
measurement matrices m(.) and H(.)  which are detailed in section IV. 
The final output of the system is the estimated position and orientation 
of the user in the global coordinates, which are parallel to the building’s 
main walls (North-East, North-West, Up). The rotation matrix that 
transforms data from the local coordinates to the global coordinates is 
obtained employing gyroscopes signals [8]. The details of the proposed 
framework are as follows.

A. Stance detection

In order to detect the stance phase, some conditions are defined. 
Once all of these conditions are satisfied, the stance is detected. These 
conditions are as follows

•	 The norm of the gravity-free acceleration becomes less than the 
defined threshold thrsa. 

•	 The norm of the gravity-free acceleration variance remains 
under the defined threshold thrsv. 

•	 The norm of the angular velocity becomes less than the defined 
threshold thrgyro. 

If all of these conditions are satisfied for the time more than the 
defined threshold thrtime, the foot is detected to be at the still phase.

B. Inertial navigation system

The conventional INS algorithm estimates the user’s position and 
orientation, based on acceleration (superscript b refers to the body 
coordinates) and angular velocity b

kω  which are measured by IMU’s 
accelerometers and gyroscopes, respectively. The main difficulty of 
using IMU data is the accumulation of sensors’s biases, which leads 
to a huge error on the estimated position and orientation over a short 
period of time. In order to correct this error EKF can be used. In this 
work the error state is a 15-element (five states) vector and is defined as

, , , ,
T T T

T b T T bδ δ δ δ δ δ =  x r v aΨ ω 		 	             (1)

where all five components are 3×1 matrices and, δΨ, δr and δv are 
the estimated error in heading, position and velocity in the global 
coordinates, and δωb and δab are the estimated biases for gyroscopes 
and accelerometers in local body coordinates, respectively. 

To compensate the biases exist in the IMU data, the raw acceleration 
b
ka  and angular velocity b

kω  are subtracted by the biases estimated by 
EKF over the previous sample time. In addition, the error estimated 
by EKF is used to correct the obtained orientation 'GkΨ , position 'Gkr  
and velocity 'Gkv  in the global coordinates (superscript G refers to the 
global coordinates). Thus, the procedure of states biases compensation 
and error correction can be written as
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C. Dynamic orientation tracking
The dynamic orientation is obtained by integrating the angular 

velocity measured by gyroscope, over the time. Assume [ , , ]b b b b T
k x y zω ω ω=ω  

be the angular velocity vector at sample time k, in a short sampling 
time, the axes will be rotated by small rotated angle vector of δΨ which 
at sample time k can be written as

[ ], , T b
k k k k k tδ δψ δθ δφ δ= =Ψ ω 			                  (3)

Due to this fact that δt is short, δψ, δθ and δϕ are small. Therefore 
using approximation [8] the orientation update equation at sample 
time k can be obtained as

( ) ( )
1

2
2

1
.

k k

k kG G
b b k k
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= + + 

 
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where ,, zx
ω ω ω ω= y  and Ωk is the skew symmetric matrix at sample 

time k, and can be written as
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' 0 '
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Obtaining the rotation matrix, acceleration in the global coordinates 
at time k [8] can be estimated as

'
( ) .k

G G b
k b k=a R a 					                     (6)

Following this notation, in order to obtain velocity and position, the 
gravity compensated acceleration is integrated and double integrated 
over the time, which can be written using trapeze integration as
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where vG and rG are the velocity and position of the user in the global 
coordinates. Using the error estimated by EKF for velocity and 
acceleration at time k, the corrected position 'Gkr  and velocity 'Gkv , in 
the global coordinates, can be obtained from Equation 2. Finally, the 
rotation matrix is corrected using angles’ errors estimated by EKF. 
Assuming the angles’ errors are small, using Pad́ e approximation [19], 
the corrected rotation matrix can be updated as

k k

G G3 3
b b

3 3
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                                                                                (9)

where kΞ  is the skew symmetric matrix at time t, and can be written as
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Figure 4: The proposed EKF-based algorithm for pedestrian navigation. The 
position and orientation of user are estimated based on the accelerometer and 
gyroscope measurements.
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D. Extended Kalman filter

We follow the EKF model addressed in [19,22] and proposed 
our EKF-based navigation system with dynamic error measurement 
matrices. Assume '

kδx  is the error state vector at time k, which is a 
nonlinear function of the states, the linearized state transition at time 
k can be written as

1 1'k k k kδ δ − −= +x Φ x w 			                                  (11)

where бxk is the estimated error state at time k, '
1kδ −x  is the corrected 

error state at time k-1 (can be obtained from Eq. 14), wk-1 is the process 
noise, and Φk is a state transition matrix of size 15×15, which can be 
obtained as

k
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where ( ' )G
kaS  is the skew symmetric matrix of global acceleration 

and is used to estimate the IMU’s orientation variations [19]. The 
measurement model [22] at time k can be written as

k k kδ= +z xH ' v 				                   (13)
where zk is the measurement error, H is the measurement matrix, and 
vk is an additive white zero-mean Gaussian noise, with covariance

( )T
k k kE=R ν ν .

Once the measurement at k is obtained, using the Kalman update 
equation, the filtered error state at time k can be estimated as

' .[ ]k k k k kδ δ δ= + −x x K m H x 			                  (14)

where Kk is the Kalman gain, mk is the actual error measurement, and 
δxk is the estimated error state [19].

The Kalman gain can be obtained as
1( )T T

k k k k
−= +K P H HP H R 			                    (15)

where Pk is the covariance matrix of the estimated error. The process 
noise wk is due to the sensor noise and calibration residual [22] and its 
covariance matrix at time k can be obtained as ( )T

k k kE=Q w w . At each 
sample time, the covariance can be propagated forward employing

1 1 1 1' T
k k k k k− − − −= +Φ ΦP P Q 			                 (16)

where 'kP  is the estimation error covariance matrix at time k, based 
on the measurement received at the last sample time k-1, and in turn 
is obtained as

' ( ) ( )T T
k k k k k k k= − − +P I K H P I K H K R K 		              (17)

where I is a 15×15 identity matrix. 

Following this notation we propose a comprehensive EKF which 
corrects the estimations based on the five states’ error measurements. 
In our method the estimated biases of gyroscope and accelerometer 
are compensated in the EKF, at every sample time, while the non-bias 
estimated error term is obtained and compensated at sample times 
that the relevant conditions are satisfied. We define the dynamic 
measurement matrix H and the dynamic error measurement matrix 

m. Both H and m matrices are equal to 15×15 and 15×1 zero matrices 
at initialization, respectively. We employed five methods to reduce 
the error, each of them feeds EKF independently. We split the H and 
m matrices to five submatrices, each submatrix can be updated based 
on its relevant condition and method, and separated from the other 
submatrices. If the relevant condition of submatrix is not satisfied the 
submatrix will be remained at zero, and then will be neglected. It means 
that at time k, EKF would be fed based on all, non or some of the five 
methods. Matrices H and m can be written as

3 15 3 15 3 15 3 15 3 15[ , , , , ]
T T T T TZ H R P N T
× × × × ×=H H H H H H 	               (18)

and

3 1 3 1 3 1 3 1 3 1[ , , , , ]
T T T T TZ H R P N T
× × × × ×=m m m m m m 	                                  (19)

where H (.)s are 3×15 and m(.)s are 3×1 matrices, and the superscripts 
Z, H, R, P and N stand for ZUPT, HDR, ZARU, IPER and ZUNA, 
respectively.

Error Reduction Methods
In this work in the absence of the external infrastructures, EKF is 

fed with the combination of five error reduction methods to correct 
the estimations. These methods are used to decrease the accumulated 
errors in orientation, velocity and position, and to compensate the 
sensors’ biases exist on the measured angular velocity and acceleration. 
This section details these employed error reduction methods.

A. Zero Velocity Update (ZUPT)

The Zero velocity UPdaTe or ZUPT method, is based on this fact 
that when the user’s foot is in the stance phase, its velocity is zero. 
In practical works, this velocity is small but not equal to zero, this 
difference can be used as an error measurement in velocity to feed EKF 
[18]. Therefore the actual error measurement submatrix mZ at time k 
[1], can be obtained as

[0,	0,	0]Z G
k k= −m v 		   		                (20)

The measurement submatrix Hz is defined in the way that selects 
the velocity error components δv of error state matrix δx (terms 10 to 
12), which can be written as

3 3 3 3 3 3 3 3 3 3[0 0 0 0 ]Z
× × × × ×=H I 	                                    (21)

B. Zero Angular Rate Update (ZARU)

The term ZARU stands for Zero Angular Rate Update, as addressed 
in [19]. It feeds EKF, when the foot is in the so called still phase. The 
idea is based on this fact that when the foot is motionless on the 
floor, the measurements from three orthogonal gyroscopes should be 
equal to zero; thus the data from gyroscope in this case, is in fact the 
measured error of the angular velocity. Following this notation the 
angular velocity error measurement submatrix mR can be written as

[0, 0, 0]R b
k km = −ω 				                  (22)

where b
kω  is an angular velocity in the local coordinates, at the kth 

sample time. The measurement submatrix HR is defined to select the 
angular velocity error components δωb of δx (terms 4 to 6), which can 
be written as

3 3 3 3 3 3 3 3 3 3[0 0 0 0 ]R
× × × × ×=H I 			                (23)

C. Heuristic Drift Reduction (HDR)

The term HDR stands for Heuristic Drift Reduction, as originally 
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proposed in [24]. The idea is based on the fact, that for the indoor 
applications, most of the corridors and paths are straight. Employing 
HDR by detecting the moments that user walks straight, the error 
in the heading is obtained. In this work, we follow the same idea as 
[19,24], but we perform it in the different way. We define the sliding 
window of λ samples and we compare heading at time k to heading at 
time k - λ. If the difference is less than the threshold, it is detected as 
an error in heading estimation, and EKF will be fed by this detected 
error, otherwise it is detected as a real variation of heading due to the 
user’s turning. The advantage of using sliding window is to apply HDR 
at every time interval (during both swing and stance phases) and not 
only at stance phase, which yields to improve the accuracy.

Assume Erψ   is the difference between the sliding window’s last data 
G
kψ  (current heading) and the first data G

k λψ −  (heading at λth preceding 
sample time), one can obtain

k

G G
k kErψ λψ ψ −= − 				                    (24)

Following this notation, H
km  can be obtained as

		 					

0 														
k k ErH

k

Er Er thr

Otherwise
ψψ ψ

 ≤= 


m 			                  (25)

where Erthr
ψ

 is the threshold and we empirically chose it as 0.15 radians. 
To select the heading components of δx, the measurement submatrix 
HH, is defined as

[ ]
2 3 2 3 2 3 2 3 2 3

1 3 1 3 1 3 1 3

0 0 0 0 0
0,	0,1	 0 0 0 0

H × × × × ×

× × × ×

 
=  
 

H 	                                    (26)

The first two rows of HH are defined as zero, to reserve the further 
development of yaw and pitch errors estimations.

D. Investigative Position Error Reduction (IPER)

IPER is used to obtain the error in calculating the estimated 
displacement. This method obtains the error of estimated displacement 
along x and y in every time interval (fixed windowing) based on the idea 
of the generality of straight paths in indoor applications, and obtains 
the error of displacement along z-axis at stance phases. The corrections 
for displacements along x, y and z-axis can feed EKF, independently. 
Assume the user walks straight and the estimated tracked trajectory is 
deviated from the expected straight line by angle ρ. Comparing  ρ to thrx 
and thry the direction of movement is detected to be along x, y or a free 
walk neither along x nor along y, where thrx and thry are thresholds of 
movements along x and y axes and can be chosen based on the actual 
location of straight paths in the global coordinates (e.g. to detect if user 
walks along the corridor or parallel to building walls). If the movement 
is detected to be along x (y) axis, in this case the real movement of 
pedestrian along y (x) axis is actually equal to zero, therefore the 
variations in the estimated displacement along y (x) axis is an error, 
which is used to feed EKF to estimate and correct the position error. 
Therefore P

km is obtained as

			 0,	 , 									 	

			 ,0, 									 	

0,	0, 																								

k

k

k

P
yl yf z x p

P P
k xl xf z y p

P
z

r r m if thr thr

r r m if thr thr

m Otherwise

ρ

ρ

  − − ≤   = − − ≤  


   

m 	              (27)

where thrρ is the threshold of straight movements detection, and thrx, 
thry and  thrρ are equal to 0, п/2 and 0.2 radians, respectively. To correct 
the displacement along z-axis, at every stance phase of walking the 
displacement along z-axis is compared to the position of the IMU at the 
start point. Without loss of generality it is assumed that the position of 
IMU along z-axis at the start point is equal to zero, while walking the 

estimated displacement along z-axis in the stance phase should be equal 
to the one at the start point and thus should be zero. This difference is 
used to feed EKF and correct the displacement along z-axis. Thus 

k

P
zm

can be written as

0
k

P
z zk zkm r r= − = 			                                    (28)

where zkr  is the displacement along z-axis at the current sample 
time. The zero terms of mP do not imply that the error is zero, while 
determining the proper matrix of Hp only the non-zero terms of thrρ 
feed EKF, and the zero terms are neglected and thus they are ineffective. 
Following this notation, Hp  can be obtained as

3 33 3 3 3 3 3 3 3[0 0 0 0 ]P P
k ×× × × ×=H I 	                                    (29)

where P
kI is a 3×3 matrix and can be written as

0 0
0 0
0 0

P P
k y

 
 
 
  

			                                     (30)

The diagonal components of P
kI can be determined independently. 

P
xI = 1 only if the movement is along y-axis, P

yI =1 only if the movement 
is along x-axis and P

zI =1 only at stance phases, and they are equal to 
zero, otherwise.

E. Zero UNrefined Acceleration update (ZUNA)

At the start point and during system initialization, when the 
user’s foot is still motionless on the floor, the acceleration is measured 
over three seconds and its mean value is calculated (āb). During the 
midstance phase of walking (when the entire foot is stationary on the 
floor), the measured acceleration is expected to be equal to the mean 
value at the start point and the difference is used to feed EKF to correct 
the measured acceleration. Following this notation N

km at midstance 
phase can be obtained as

bN b
k k= −m a ā 					                (31)

The midstance phase is detected in the same way as stance phase 
but by the smaller thresholds on acceleration and the variance of 
acceleration and larger threshold of time. The measurement submatrix 
HN, during midstance phase can be written as

3 3 3 3 3 3 3 3 3 3[0 0 0 0 ]N
× × × × ×=H I 			                 (32)

Localization Testing and Results
This section presents the implementation of the navigation 

algorithm, and analyzes the system performance in different tests. 
The positioning error can be considered as a percentage of the total 
traveled distance. From the state-of-the-art  the acceptable error of 
self-contained (IMU-alone) navigation system is about 2% of the total 
traveled distance [8]. We carried out several indoor tests including 
repetitive and closed-form trajectories. During the tests IMU was fixed 
on the user’s right foot using shoe laces, as shown in Figure 5. In addition, 
IMU was connected to the netbook computer through USB port, and 
the estimated tracked path was displayed in the netbook screen online, 
while the data were recorded to replicate the test for more processing. 
The user walked normally at a steady speed of approximately 0.5 - 1 m/s 
in the forward direction.

A. Rectangular path

In the first test the user tracked along a known-length rectangular 
path, clockwise. To evaluate the accuracy of orientation estimation, at 
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each rectangle’s vertex, the user stopped and then turned 90° clockwise, 
but the system also works well for continuous tracking. User stood at the 
start point for three seconds, and after tracking the path, stopped at the 
same point. The error of walking along the desired path and standing 
at the exact same stop/start point by user was a few centimeters. Figure 
6 shows the original acceleration and angular velocity in the local 
coordinates, measured by IMU during this test. As can be seen during 
the stance phase the angular velocity is not zero due to the sensor’s 
biases. In addition, the norm of the accelerations in the stance phase at 
the beginning of the experiment was 1.0129g, due to the gravitational 
acceleration and sensor’s biases. The value of angular velocity along 
x-axis is larger than other components, because user’s foot had more 
rotation about this axis during walking, compare to other axes.

However, at vertices and during turning the value of angular velocity 
along z-axis becomes significant because the rotation was on the leveled 
floor and thus about z-axis. Employing the discussed algorithm, the 
gravity and biases were removed from the acceleration. The upper part 
of Figure 7 shows the gravity and bias-free acceleration in the global 
coordinates. From Figure 7 it is possible to estimate the direction of 
walking, while in the first and third parts of the graph, the acceleration 
has the greater value along the y-axis and in the second and last parts 
the value along x-axis is greater. The norm of the global acceleration at 
the stance phases has the average value of 0.0017g, which demonstrates 
the gravity and sensor biases, were compensated properly. The global 
velocity was obtained by integrating the global acceleration over the 

time. The second part of the Figure 7 shows the global velocity. As can 
be seen, the  value of the velocity is greater along either y or x axes in the 
same order as acceleration. 

Figure 8 shows the displacements along x and y axes, and the 
orientation of the user during test, which is indeed the yaw angle 
respect to the global coordinates. The global displacement was obtained 
by double integrating the global acceleration over the time. In addition, 
Figure 8 illustrates the user walked and turned clockwise. The reference 
heading shows the ideal yaw angle, where in a normal walking of 
human the turning of direction cannot be sharp. 

Figure 9 illustrates the tracked trajectory in the x-y plane. The 
reference path was the rectangle with a perimeter of 25.8 m, and its sides 
were along x and y axes of global coordinates. The estimated path was 
alike the real tracked trajectory, in the sense of shape and closed-form. 
The difference between the start and estimated end points was 0.05 m 
and therefore the tracking error was 0.19% of total traveled distance. 
Figure 10 shows the estimated tracked path in the three dimensions, 
as can be seen the estimated path is corrected along all three axes 
successfully. At the rectangle vertices where the user’s foot was on the 
floor for a longer time, the displacement along z approached zero.

B. Comparison of error reduction methods 

To compare the EKF-based navigation system with five error 
reduction methods to the state-of-the-art (systems with up to three 
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Figure 7: Acceleration and velocity in the global coordinates, relevant to the 
human walking along a rectangular path.
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Figure 5: IMU mounted on the user’s shoe using the laces.
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error reduction methods), and to evaluate the effect of applying 
correction at different time intervals and not only at stance phases, a 
rectangular path was tracked, and the recorded signals were used to 
replicate the estimation employing EKF with different error reduction 
methods. Figure 11 shows the different trajectories obtained from EKF 
in the existence of three, four or five error reduction methods. Figure 
12 shows the heading obtained from EKF using different methods. The 
third part of heading graph tends to approach -270° or 90° which in 
fact gives the same direction. The error between the start point and 
estimated stop point is reported in Table 1 in terms of distance and the 
percentage of Total Traveled Distance (TTD%).

C. Tracking on other indoor paths

To evaluate the performance of the proposed EKF-based INS 
algorithm for indoor navigation, we carried out some indoor tests over 
longer trajectories. To consider the repeatability of the algorithm, the 
rectangular path is tracked six times continuously clockwise in the 

Error Reduction Methods Error (TTD %) Error (m)
ZUPT + ZARU + HDR + ZUNA + IPER 0.2% 0.052 m
ZUPT + ZARU + HDR + ZUNA 6.6% 1.72 m
ZUPT + ZARU + HDR + IPER 2.3% 0.60 m
ZUPT + ZARU + HDR 7.9% 2.05 m

Table 1: Tracking error of EKF-based navigation system using different error 
reduction methods relevant to a human walking along a rectangular path.
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forward direction. The results demonstrate the difference between the 
start and estimated end point was 0.38 m thus the tracking error was 
0.25% in terms of the percentage of total traveled distance. The point 
to point comparison shows the maximum error occurred at the upper 
right vertex of the triangle where the error is about 0.52 m, despite of 
estimation error, this error is due to this fact that at the turning point 
during normal walking, each time the user passed about the same point 
and not necessarily over the exact point (as start/end point). Figure 
13 shows the estimated tracked trajectory. We performed another test 
in our main building. During the test the user walked forward and 
stopped if the person was in the path. User started to walk from a point 
inside the building, and after walking indoor, exited the building and 
walked along the building’s wall and finally entered the building from a 
different door and stopped at the same point as start point.

Figure 14 shows the estimated trajectory, where the real trajectory 
length was 78 m. The estimated tracked trajectory, was alike the real 
path in sense of shape and closed-form, and it was shorter than the 
real trajectory. The difference between the start and estimated end point 
was 0.6382 m and the tracking error in terms of the percentage of total 
traveled distance were 0.82%.
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Conclusion
This paper presented an accurate infrastructure-free EKF based 

navigation system for pedestrian indoor navigation, employing only 
the measurements of accelerometers and gyroscopes of IMU. The 
contributions of this work in comparison to the conventional systems 
were as follow: (i) in this work the dynamic error measurement 
matrix (H) was used, thus different error reduction methods fed 
EKF independently and at different times, which yielded to obtain 
the higher accuracy; (ii) the error correction was applied not only at 
the stance phase but also at different time intervals during the swing 
phase of human walking; (iii) the algorithm was developed without 
using magnetometer, thus environment’s equipment and supplies have 
not affected the system performance; therefore it is reliable for indoor 
applications; and (iv) in our system five different error reduction 
methods were used, which fed EKF with estimated error of all five states; 
thus as a result the tracking error were obtained less than 1% (0.19%-
0.82%) in terms of the percentage of the total traveled distance, which 
means the proposed system accuracy is higher than the conventional 
systems. As a future work the proposed navigation system will be 
implemented on the user’s smartphone.
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